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Abstract

A formalism for expressing the operational semantics of proof languages used in
procedural theorem provers is proposed. It is argued that this formalism pro-
vides an elegant way to describe the computational features of proof languages,
such as side effects, exception handling, and backtracking. The formalism, called
proof monads, finds its roots in category theory, and in particular satisfies the
monad laws. It is shown that the framework’s monadic operators are related
to fundamental tactics and strategies in procedural theorem provers. Finally,
the paper illustrates how proof monads can be used to implement semantically
clean control structure mechanisms in actual proof languages.

Keywords: proof languages, deductive strategies, category theory, monadic
structures

1. Introduction

Proof script languages of interactive theorem provers such as ACL2 [16],
Coq [5], HOL [12], or PVS [32] are similar to interpreted programing languages
in that they consist of a sequence of instructions that are typically processed
in a read-eval-print loop. In the case of proof languages, instructions describe
proof steps that gradually construct a proof object. Two types of instructions are
traditionally distinguished in procedural theorem provers: tactics, which are the
elementary deduction rules of the prover’s logic; and strategies, which are tactic
combinators that provide the control structure mechanism of the language. The
proof engine, which plays the role of a virtual machine, reacts to the application
of these instructions by modifying the state of the proof object, e.g., opening
new goals in the proof tree, closing some branches, changing the focus to a
different branch, etc.
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The last few years have seen an increasing interest on the development of
proof languages for theorem provers and their formal semantics. Most notably,
Sacerdoti et al. [8], Delahaye [10], and Martin et al. [26] propose various control
structure languages, and use diverse semantic frameworks to formalize them.
These approaches abstract away the human-prover interaction of procedural
theorem provers, and focus on the representation of the proof object. This
paper proposes a different approach to the semantics of proof languages that
considers not only the proof object but also the outcome of the interaction with
the theorem prover. This approach yields a formalism that is arguably closer in
spirit to the read-eval-print loop model of interactive theorem provers.

Take for instance λ-terms, which are well-known to represent complete proof
trees in constructive logic through the Curry-de Bruijn-Howard isomorphism.
The encoding of incomplete proof trees requires non-trivial extensions to the
λ-calculus with open terms, for example via metavariables and explicit sub-
stitutions [25, 31, 28, 15]. Unfortunately, open terms are not well-suited to
capture the non-logical information that is required to express the semantics of
the interactive proof construction process.

The limitations of the usual proof representation is illustrated by an attempt
to formalize the semantics of one of PVS’s most feature-rich strategies: try [2].
Informally, the script (try t1 t2 t3) applies its first argument t1 to the goal,
and if it generates subgoals, it applies t2 to the subgoals; otherwise, it applies
t3. Furthermore, if t2 fails, for example, because t2 = (fail), then it initiates
a backtracking sequence, which is propagated until it is evaluated as the first
member of another try construct, in which case it evaluates its third argument.
The semantics of try is given in terms of five different types of state information:
failure, success, skip, subgoals, backtrack. Using |.| as a semantic evaluator, the
behavior of try can be expressed as follows:

|(try t1 t2 t3)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|t3| if |t1| ∈ {skip, backtrack}
|t1| if |t1| ∈ {failure, success}
backtrack if |t1| = subgoals,

|t2| ∈ {failure, backtrack}
subgoals if |t1| = subgoals,

|t2| ∈ {skip, subgoals}
success if |t1| = subgoals,

|t2| = success ,

where

|(skip)| = skip
|(fail)| = failure .

The information required to deal with the semantics of try is not part of the
actual proof tree. In fact, in this explanation of the behavior of try, the proof
tree is not even mentioned. This hints at an approach to express the interactive
nature of proof script languages: the notion of proof object can be extended
to include non-logical information such as a pointer to the subgoals that are
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currently open and feedback information for the user about the outcome of the
proof steps that have been applied. Yet the question remains, whether there
exists a consistent mathematical framework to construct these objects and what
are their properties.

Monads are elements of the theory of categories introduced in computer sci-
ence to deal with non-functional constructs in purely functional programming
languages. The idea behind monads is to bundle extra information into the ob-
jects manipulated by functions. For instance, a function f mapping an element
a to an element b could be extended to a function f ′ on pairs that also increases
a counter x: f ′(a, x) = (b, x + 1). In this simplistic example, the “bundling”
that enables the counting side-effect is done by using a pair of values. While
this example illustrates the case of imperative side-effects, monads generalize
this approach to any type of side-effects, such as exceptions, input-output, con-
tinuations, and non-determinism [39].

In this paper, it is shown how adding a monadic structure to a generic proof
object provides a mathematical structure for expressing the formal semantics
of non-trivial procedural proof languages. Section 2 reviews the core structure
of proofs and defines a representation of proof trees that does not rely on any
particular data structure. Section 3 provides a primer on category theory, before
defining proof monads and their mathematical properties. Section 4 illustrates
the use of proof monads by defining the semantics of a sample, parametric proof
language. Section 5 discusses the concrete implementation of proof monads in
two theorem provers: PVS and FSP [20]. Finally, Section 6 discusses the choices
that were made and covers related work.

2. Proof Trees

Given a formal language L and an entailment relation ` defined by a set of
deduction rules [4], a sequent is written Γ ` ∆, where Γ,∆ are sets of formulas
of L. A proof is generally organized in a tree structure, called a proof tree,
in which nodes are labelled with sequents. A complete proof tree is a tree of
sequents where the leaves are axioms of L and the connections between children
and parent nodes are justified by the `-deduction rules. Therefore, the root
of a complete proof tree is a theorem in L. In procedural theorem proving, a
complete proof tree is gradually constructed from an incomplete tree, i.e., a tree
where the leaves may not be axioms but open goals that have to be proven in
order to declare the root formula a theorem. Henceforth, the term proof tree
refers to both complete and incomplete proof trees and will be denoted by lower
case letters x, y, . . .

Definition 1 (Proof tree). A proof tree is a set of sequents of L-formulas,
organized in a tree structure, where instances of `-deduction rules constitute
the links between nodes. As usual, the nodes of a tree can be referenced by
their position. The set of positions of a tree x is denoted Px. If α ∈ Px,
then x|α denotes the subtree of x such that the node at position α is the root.
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Furthermore, the set of open goals of x, denoted Ox, is the set of all positions
α ∈ Px such that x|α is an incomplete leaf of x.

The concrete representation of proof trees varies among different theorem provers.
For instance, PVS uses a collection of tactic calls, whereas Coq and Alf [25] use
variants of open λ-terms. Definition 1 considers an abstract representation of
proof trees, which can be instantiated by different datatypes. For instance, the
mapping between λ-terms and proof trees follows the Curry-de Bruijn-Howard
isomorphism. Moreover, the process carried out by recursive command calls can
be abstracted as the construction of a proof tree. Mappings between Coq and
PVS tactics and enhanced λ-terms have been proposed in [18].

Since proof development in an interactive theorem prover is a sequential
activity, an order relation between the open goals of a proof tree is also needed.
This ordering can be chosen arbitrarily, but typically mirrors the various tree
traversal algorithms. From now on, it is assumed that there is a total order ≺
on Ox.

Procedural theorem provers limit the scope of a proof step application to a
subset of open goals. The goals in this subset are called current goals, and they
usually change after the application of a proof step. Although open goals are
often scattered throughout the proof tree, the current goals are usually localized
in a branch of the tree. In particular, the current goals are determined by the
position of their nearest common ancestor. This position is called the current
index and the children of the node in the current index are assumed to be either
complete subtrees or open goals.

Definition 2 (Indexed proof tree). An indexed proof tree x[α] is a proof tree
x parametrized by a position α ∈ Px. All open goals at position β ∈ Ox|α are
called current goals. The type τ is the type of indexed proof trees.

Remark that using indices makes for a very compact representation of current
goals. Most modern proof assistants are directly compatible with this abstrac-
tion. Others (e.g., [3]) require more fine-grained control over the selection of
current goals, which can be achieved by directly indexing the leaves of the proofs
and using more complex proof instructions to manipulate them.

Finally, the following operations are defined on indexed proof trees.

Definition 3 (Leaf). The partial function ↓i of type τ → τ maps an indexed
proof tree x[α] to the indexed proof tree x[β] such that β is the i-th element of
Oxα (under ≺), when it exists.

Definition 4 (Sibling). The partial function  of type τ → τ maps an in-
dexed proof tree x[α] to the proof tree x[β] such that β is the minimum element
of Ox \ Ox|α (under ≺), when it exists.

These next graphics illustrate the semantics of these functions. The big triangle
represents a proof, of which the small triangle designates a subproof. The grayed
area denotes the subtree whose open goals are the current goals. The function
↓i provides a way to displace the current index to a particular subgoal within
the set of current goals. For instance, ↓1 transforms the indexed proof tree:
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α into: α

On the other hand, the function  would displace the index to the next open
subgoal outside the set of current goals. For instance, given the indexed proof
tree:

α it returns: α

3. Categories, Monads, and Proof Monads

Adding computational effects such as side-effects, exceptions or input/output
to pure functional languages is an important step towards the usability of these
languages. While some languages such as OCaml or Scheme augment their
semantics with adhoc constructions and rules, others such as Haskell or Gallina
translate these features into pure functional constructs. One simple idea is to
augment the objects that functions manipulate with computational objects such
as a memory state, an exception stack, or an input/output socket. Moggi [29, 30]
proposed the mathematical structure of monads to achieve this.

3.1. Categories
Monads are defined as a special kind of categories. For completeness, this

section briefly reviews the theory of categories, using Buronni’s graphical pre-
sentation [6]. For topical introductions to the subject, see [23, 1].

Definition 5 (Graph). A graph is defined as a quadruplet (G0, G1, s, t), where
G0 is the set of objects, G1 is the set of morphisms of the graph, and s and t
are two applications such that:

G1
s−−−−−→−−−−−→t

G0

For any morphism f , the objects x = sf and y = tf are called respectively the
source and the target of f , and we note f : x→ y.

Note that objects and morphisms are also called nodes and arrows, respectively.
In reference to algebra, the objects sf and tf are also called the domain and
co-domain of f , respectively.
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Definition 6 (Category). A category is defined as a triple (G, id, ◦), where
G = (G0, G1, s, t) is a graph and id and ◦ are morphism constructors, called
respectively identity and composition:

G0
id−−−−−→ G1 G1 ×G1

◦−−−−−→ G1

The elements of a category verify:

• For any morphisms f, g ∈ G1 ×G1 such that tf = sg,

s(f ◦ g) = sf t(f ◦ g) = tg .

• For any object x of G0,

s(id x) = t(id x) = x .

• For any morphisms f, g, h of G1×G1×G1 such that tf = sg and tg = sh,

(f ◦ g) ◦ h = f ◦ (g ◦ h) .

• For any morphism f : x→ y of G1

f ◦ (id y) = (id x) ◦ f = f .

Definition 7 (Functor). Functors are morphisms between categories. A func-
tor F : C → C ′ between two categories is defined by a transformation h : G→
G′ between their corresponding graphs such that:

• For any object x of G,

h(id x) = id(hx) .

• For any morphisms f, g of G such that tf = sg,

h(f ◦ g) = (hf) ◦ (hg) .

Composition between functors is defined by the composition between their cor-
responding graph transformations.

Definition 8 (Natural transformation). Natural transformations are mor-
phisms between functors. Given two categories C,C ′ and two functors F, F ′ :
C → C ′, a natural transformation φ : F → F ′ is a family of morphisms on C ′
indexed by the objects of C

C C ′
F

F ′

φ
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such that:

• For any object x of C,

sφx = Fx tφx = F ′x .

• For any morphism f : x→ y of C,

(Ff) ◦ φy = φx ◦ (F ′f) .

3.2. Monads
Definition 9 (Monad). A monad is a quadruplet (C, T,unit, ?) where C =
(G, id, ◦) is a category, T : C → C is a functor, and unit : id → T and ? : T →
(id→ T )→ T are natural transformations

C T T × Tunit ?

with the following properties:

• For any object x of C and morphism f : C → TC,

unit x ? f = fx .

• For any object m of TC,

m ? unit = m .

• For any object m of TC and morphisms f, g : C → TC,

m ? λx.((fx) ? g) = (m ? f) ? g .

The natural transformations unit and ? are commonly referred to as monadic
operators.

In order to represent computational effects with monads, one has to encode
programs as mappings from a category of values to the monad of computations
defined over this category. Thus, assuming that the types A and B are objects
from the category of values, and (T, unit, ?) is a monad, then a program is
represented as a morphism A → TB. The monadic operator unit : A → TA
initializes the system by turning a value into its trivial computation counterpart,
and the operator ? : TA→ (A→ TB)→ TB allows a program of type A→ TB
to be applied to a computation of type TA.

Of course, there are as many choices for T as there are computational effects
and combinations of these. The following example illustrates the use of monads
to describe the computational effects of exceptions in a programming language.



3 CATEGORIES, MONADS, AND PROOF MONADS 8

Example 1 (The exception monad). Let P be a purely functional program-
ming language and CP the category of its values. Exceptions can be added to
P by defining a monad (CP , T,unit, ?) such that for any program p,

Tp =
∣∣∣∣ raise e

return p

where raise and return are two new datatypes of P. Note that the category
of program values CP is extended to encompass these datatypes. The natural
transformations unit and ? are defined as:

unit = λa.return a
? = λm.λf.match m with∣∣∣∣ raise e 7→ raise e

return a 7→ fa

3.3. Proof Monads
Definition 10 (Proof monad). Assume L is a formal language and ` is an
entailment relation operating on formulas of L. Assume τ is the type of indexed
proofs in this formalism. Let Cτ be the category of proof values and (M,unit, ?)
be a monad over Cτ such that for all indexed proofs x[α]:

Mx[α] =

∣∣∣∣∣∣
x[success]
x[subgoals b α]
exception s

where b is a Boolean value, and s is an arbitrary symbol. Let match be a
destructor of this datatype. The monadic operators are defined as follows:

unit = λx[α].x[subgoals false α]
? = λm.λf.match m with∣∣∣∣∣∣∣∣

x[subgoals b α] 7→ match f x[α] with∣∣∣∣ y[subgoals b′ β] 7→ y[subgoals (b⊕ b′) β]
∗ 7→ f x[α]

∗ 7→ m

where ⊕ stands for Boolean disjunction.

Note that the proof monad extends at the same time the type of indices, with
the special symbols success and subgoals, and the type of indexed proof trees,
with an exception proof-tree state exception. The symbols success, subgoals,
and exception constitute the feedback information of the proof system, i.e., the
outcome of a proof instruction:

• subgoals b indicates whether or not subgoals have been generated by the
instruction. By convention subgoals false means that no subgoals were
generated;
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• success indicates that the instruction has discharged (proven) all the cur-
rent goals;

• exception s indicates that the instruction has raised an exception, labelled
s. Exceptions are raised by the user (through the use of appropriate
tactics) or by the proof engine (if a tactic fails to apply correctly).

As for the monadic operators unit and ?, the former can be understood as a neu-
tral instruction that does not modify the proof tree, while the latter composes
the outcome of an instruction with the application of a second.

Also note that, in order for this development to match the monadic require-
ments, it is assumed that a categorical interpretation of (L,`) exists. Such an
interpretation, called the Lambek-Lawvere isomorphism [21, 24], was first intro-
duced in the scope of intuitionistic propositional logic, and was later generalized
to systems of increasing complexity [22, 33, 34, 35, 38, 14].

Propositions 1 and 2 ensure that the monadic operators of proof monads are
correctly defined.

Proposition 1. The operators ? and unit satisfy the left and right unit prop-
erties:

∀x[α] : τ,∀f : τ →M τ, (unit x[α]) ? f = f x[α] (1)
∀m :M τ,m ? unit = m (2)

Proof. The proofs of these two properties are easy. Formula (1) is proven by
case analysis on the outcome of f . Formula (2) is proven by case analysis on m.
Both proofs use the fact that the Boolean disjunction with false is the identity.

Proposition 2. The operator ? is associative:

∀m :M τ,∀f1, f2 : τ →M τ,m ? λxτ .((f1 x) ? f2) = (m ? f1) ? f2 (3)

Proof. The proof is carried by case analysis on m, and on the outcome of f1
and f2. The associativity of ⊕ concludes the proof.

Additional map and join operators can also be defined. They are usually
seen as a decomposition of the ? operator: m ? k = join (map km).

Definition 11 (Map). The operator map lifts a function on proof trees to a
function on computations.

map : (τ → τ)→ (M τ →M τ)
map = λf.λm.m ? λx.unit (f x)

= λf.λm.match m with∣∣∣∣ x[subgoals b α] 7→ x[subgoals b (f α)]
∗ 7→ m
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Definition 12 (Join). The operator join flattens two layers of information into
one.

join :M (M τ)→M τ

join = λm.m ? λx.x

= λm.match m with∣∣∣∣ x[subgoals b α] 7→ x[α]
∗ 7→ m

4. Semantics of a Proof Language

This section illustrates the use of proof monads by specifying the seman-
tics of a generic proof language. In this language, instructions are split into a
logic-dependent set of tactics T, and a parametrized logic-agnostic set of strate-
gies PRF(T). Let (M,unit, ?) be a monad over the category Cτ , defined in
accordance with Definition 10.

Consider a logical framework with a minimalistic propositional sequent cal-
culus.

Definition 13 (Lmin). The syntax of the minimalistic propositional logic Lminis
defined as follows:

A,B = > | f | A⇒ B

where f ranges over a set of propositional variables. Proof terms of this logic are
given as Curien and Herbelin’s λ̄µµ̃-terms [9] according to the following syntax:

c = (v‖e)
v = χ | n | λχA.v | µωA.c
e = ω | v · e | µ̃χA.c

where c denotes a command in the λ̄µµ̃-calculus, v denotes a term, and e denotes
an environment. Additionally, χ and ω range over sets of term and environment
variables, respectively, and n is a constant that inhabits >. Note that the
λ̄µµ̃-terms used in this example are by no means central to the topic of this
paper: their inclusion is solely meant to illustrate sequent labelling. For the
interested reader, more details about the term structure, calculus and proof-
term isomorphism are available in [9].

Sequents have the following form:

Γ; e : A ` ∆ Γ ` v : A; ∆

Incomplete proofs are represented using metavariables at the level of proof
terms. The sequent calculus is specified in Figure 1, in the form of a labelled
rewriting system on (possibly incomplete) proof instantiations and derivations.
This particular formalisation of a proof calculus as a rewriting system closely
replicates the usual proof instantiation process (e.g., [31]), and is further devel-
oped in [17].
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Γ; Ξ0 : A ` χ : A axL χ−−−−→ Γ;χ : A ` χ : A

Γ, χ : A ` X0 : A axR χ−−−−→ Γ, χ : A ` χ : A

Γ ` X0 : true trueR−−−−→ Γ ` n : true

Γ; Ξ0 : A⇒ B ` C ⇒L−−→ Γ ` X1 : A Γ; Ξ1 : B ` C
Γ;X1 · Ξ1 : A⇒ B ` C

Γ ` X : A⇒ B
⇒R χ−−−−→

Γ, χ : A ` X1 : B
Γ ` λχA.X1 : A⇒ B

Γ; Ξ0 : A ` C cutL χ B−−−−−−→
Γ, χ : A ` X1 : B Γ, χ : A; Ξ1 : B ` C

Γ; µ̃χA.(X1‖Ξ1) : A ` C

Γ ` X0 : A cutR ω B−−−−−−→
Γ ` X1 : B Γ; Ξ1 : B ` ω : A

Γ ` µωA.(X1‖Ξ1) : A

Figure 1: Sequent calculus of the minimalistic propositional logic

Unlike Curien and Herbelin’s sequents, which can contain commands, their sim-
plified version presented here only includes terms and environments. This is
achieved by collating, in Curien and Herbelin’s calculus, derivation rules that
introduce commands with rules that eliminate them.

Definition 14 (Tmin). For each rewrite rule in Figure 1, an element t in the
set of tactics Tminis defined. The syntax for each tactic is derived from the
corresponding rule label:

t = axL χ | axR χ | trueR | ⇒L | ⇒R χ | cutL χ B | cutR χ B

where χ and B are respectively a proof term variable and a well-formed formula.
The application of a tactic to a proof tree, denoted 〈t, x[α]〉 builds an object in
M τ , as described below.

The proof language PRF is a variation of the original proof language of the
LCF system, which includes most of the features available in modern theorem
provers such as Coq, Isabelle, and PVS.

Definition 15 (PRF). Given a tactic language T , the proof language PRF(T)
for the minimalistic logic consists of the following tactics and strategies:

s = postpone | idtac | i ; i | [ ilist ] | i . i | �
i = t | s

ilist = i, . . . , i

where t ∈ T . Note that the nonterminal ilist denotes a comma-separated list of
arbitrary length. The notation 〈 , 〉 is extended to denote the application of all
instructions (tactics and strategies) to proof trees, where 〈i, x[α]〉 has the type
M τ .
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The intended semantics of PRF(T) is described as follows (a more formal defi-
nition follows in Section 4.1):

• Tactics apply once their corresponding inference rule to each of the current
goals. In particular, if the current index points to a subtree in the proof,
the inferences are applied to all of the open goals in this subtree. The
proof index remains unchanged, and the outcome of this application is
recorded in the proof monad.

• The tactic postpone moves the index to the current goals to its brother.
The symbol ‘.’ is a stepwise instruction evaluator, and � is an end-of-
proof delimiter. These three elements will be referred to as interactive
commands.

• The tactic idtac and the symbol ‘;’ are the identity and sequential compo-
sition tactic combinators, respectively. The list combinator [i1, i2, . . . , in]
applies the instruction ik to the k-th current subgoal. It is assumed that
the number of current subgoals is equal to n. Since these combinators are
used to build complex proof scripts, they will be referred to as program-
ming strategies.

In this formalism, proof instructions are considered to be functions from proofs
to computations, i.e., objects of type τ → M τ . In this sense, the proposed
treatment of proof languages is very similar to that of functional programming
languages.

Definition 16 (PRF(Tmin)). The set of tactics in Definition 15 is instantiated
with Tmin, which forms the proof language PRF(Tmin).

4.1. Semantics of Tactics
The formal semantics of tactics is derived from the semantics given in Fig-

ure 1.

Definition 17 (Formal semantics of tactics). The result of the evaluation
of a tactic t on an indexed proof x[α] is derived from the semantics of its local
application to a given sequent, as given in Figure 1, by the following algorithm.

• If there is only one current goal, the sequent inference rule is applied to
the goal, with the necessary guards:

– if the topmost symbol of the current goal does not match the symbol
required for the application of the logical inference rule, then the re-
sult is the monadic construction exceptions, where s is a symbol that
is associated with, say, the exception “tactic cannot be applied
to current subgoal”;

– if no conditions are necessary for the application of the inference rule
and y is the proof x with the previously current goal closed, then the
result is the monadic construction y[success];
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– if n > 0 conditions need to be discharged for the application of
the inference rule and y is the proof x extended with the n cor-
responding subgoals, then the result is the monadic construction
subgoals true y[α];

– finally, if a tactic applies but does not modify x[α], then the result is
the monadic construction subgoals false x[α]. This is used mainly to
perform bookkeeping tasks, such as formula renaming, some subgoals
reordering, etc.

• If there are m current goals. In this case, the tactic t is recursively eval-
uated on each of the current goals following the proof tree’s open goals
ordering. Furthermore,

– if any of the evaluations generates an exception, then return the
exception;

– if the evaluation discharges all current goals, and z is the proof x with
its previously current goals closed, then the result is the monadic
construction z[success];

– if, for some goals, subgoals are generated, and z is the proof x ex-
tended with the subgoals, then the result is the monadic construction
subgoals true z[α];

– if the tactic has not modified any of the current goals, then the result
is the monadic construction subgoals false x[α].

Example 2. Let x[α] be a proof tree with only one current goal, representing
the following formula:

Γ; Ξ0 : A⇒ B ` C

Without loss of generality, we can assume that α represents the position of this
open goal in x. Let z[β] be a proof tree where no such current goal exists. The
semantics of ⇒L is given by

〈⇒L, x[α]〉 → subgoals true y[α]
〈⇒L, z[β]〉 → exception s

where:

• y is a proof tree exactly as x except in the position α, where y|α represents
the subtree of the following derivation:

Γ ` X1 : A Γ; Ξ1 : B ` C
Γ;X1 · Ξ1 : A⇒ B ` C

Note that the index α remains unchanged by the tactic application.

• s is the symbol that uniquely represents the exception “tactic cannot
be applied to current subgoal”.
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〈idtac, x[α]〉 → unitx[α]
〈c1; c2, x[α]〉 → 〈c1, x[α]〉 ? c2

〈[c, l], x[α]〉 → foldα,0 [c, l] 〈c, x[success]〉

with

foldα,i [c] m→ match m with∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x[subgoals b β] 7→ match 〈c, x[↓iα]〉 with∣∣∣∣∣∣
y[subgoals b′ γ] 7→ y[subgoals (b⊕ b′) α]
y[success] 7→ y[subgoals b α]
exception s 7→ exception s

x[success] 7→ match 〈c, x[↓iα]〉 with∣∣∣∣ y[subgoals b γ] 7→ y[subgoals b α]
∗ 7→ m

exception s 7→ exception s

and

foldα,i [c, l] m→ match m with∣∣∣∣∣∣∣∣∣∣∣∣

x[subgoals b β] 7→ match 〈c, x[↓iα]〉 with∣∣∣∣∣∣
y[subgoals b′ γ] 7→ foldα,i+1 [l] y[subgoals (b⊕ b′) γ]
y[success] 7→ foldα,i+1 [l] y[subgoals b β]
exception s 7→ exception s

x[success] 7→ foldα,i+1 [l] 〈c, x[↓iα]〉
exception s 7→ exception s

Figure 2: Semantics of programming strategies

To conclude the example, these semantics can be extended to deal with any
number of current goals: if there are k current goals, then either ⇒L applies
to all of them, and subgoals true . . . is generated. Otherwise, the exception
constructor is used.

4.2. Semantics of Strategies
Definition 18 (Formal semantics of strategies). Figures 2 and 3 complete
the definition of the semantics of programming strategies and interactive com-
mands, respectively.

The monadic operators unit and ? are exact denotations for the identity idtac
and sequential composition ‘;’ combinators. An intermediary function fold is
used to inductively define the semantics of the list evaluation. The monadic
operator map is also implicitly used to implement the tactic postpone.
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〈postpone, x[α]〉 → subgoals false x[ α]
〈c1.c2, x[α]〉 → match 〈c1, x[α]〉 with∣∣∣∣∣∣

y[subgoals b β] 7→ 〈c2, y[↓1 β]〉
y[success] 7→ 〈c2, y[ α]〉
exception s 7→ exception s

〈�, x[α]〉 → x[success] if no open goals remain in x,
exception “the proof is not yet finished“ else.

Figure 3: Semantics of interactive commands

〈spread l, x[α]〉 → if length l > card α
then 〈[truncate (card α) l], x[α]〉
else if length l < card α
then 〈[extend (card α) l], x[α]〉
else 〈[l], x[α]〉 ,

where

• length l and card α return respectively the length of the list l and
the number of open goals in α;

• truncatenl and extendnl respectively truncate the list l at length
n and extend the list l to length n, using its last element as a filler.

Figure 4: A safe list strategy

The list operator does not handle the case where the number of current goals
and the number of commands in the list are not equal. In implementations of
this strategy where such a mismatch can occur, tests are added to detect and
correct these cases. Figure 4 shows the semantics of such a strategy, called
spread: if there are fewer goals than commands in the list, then the list is
truncated; if there are more goals than commands then the last command is
applied by default. This treatment of special cases can also be applied to define
safe versions of the commands postpone and ‘.’.

The proof language presented in this section can easily be extended with
exception constructors and destructors, e.g., throw and catch such as in the
upcoming Example 3, progress testers, e.g., Coq’s orelse, and more complex
strategies. Indeed, many of these language extensions are included in the im-
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plementations of this concept discussed in Section 5.

Example 3. An exception mechanism that uses exception to raise, propagate
and catch failures can be defined as follows

〈throw s, x[α]〉 → exception s
〈catch i1 i2, x[α]〉 → match 〈i1, x[α]〉 with∣∣∣∣ exception s 7→ 〈i2, x[α]〉

m 7→ m

4.3. Characterization of Strategies
The formalism presented here can be used to mathematically characterize the

behavior of different kinds of strategies. For instance, programming strategies
and interactive commands can be characterized as follows.

Proposition 3 (Proof commands characterization).

1. Let c be any proof command constituted only of tactics and programming
strategies. If 〈c, x[α]〉 = subgoals b y[β], then α = β. In other terms, the
programming strategies do not modify the position of the current index.

2. Interactive commands are the only constructs of a proof language that can
modify the position of the current index in the proof.

Proof. Proposition 1 is proven by case analysis on strategies. Proposition 2 is
a straightforward corollary of Proposition 1. Q.E.D.

Remark that, while interactive commands can modify the position of the
current index, they will not necessarily result in such a change. For instance,
as a consequence of the semantics of  , postpone will not affect the current
index if there is only one open goal in the proof tree.

The characterization effort can be pushed one level of abstraction higher,
and reflect on what constitutes a proof strategy language:

• There needs to be a data structure to mirror user interaction: given a
formal language, a consequence relation and the associated proof tree rep-
resentation, it can be argued that the proof monad (M, idtac, ?) provides
such a structure.

• Some constructors and a destructor for the monadic datatype, e.g., match,
are required to generate and analyse proof feedback.

• The fold instruction is required to provide a way to apply distinct instruc-
tions to different current goals.

• Finally, there needs to be a programming language λ to build complex
strategies out of simple ones—using the monadic datatype destructor if
necessary.
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The inclusion of the fold operator into this list suggests another kind of
presentation of the proof monad, one that complicates the underlying categorical
foundations but simplifies the characterization of a proof strategy language.
Indeed, consider the n+ 1-ary strategy i0; [i1, . . . , in] as an implementation of a
monadic composition operator.
Conjecture 1. There exists an extension of the theory of monads, where the
operator ? is n-ary on the right. The monad laws for this construction are the
left and right unit:

idtac ? (i, . . . , i) = i

i ? (idtac, . . . , idtac) = i

and associativity:

i ? (i10 ? (i11, . . . , i1n1
), . . . , im0 ? (im1 , . . . , imnm)) =

i ? (i10, . . . , im0 ) ? (i11, . . . , imnm)

Given such an extension, the triple (M, idtac, ?), where ? is n-ary on the right,
is a monad.

Assuming this conjecture holds, the previous list of features for proof lan-
guages can be reduced to an n-ary proof monad built over the proof structure,
along with its datatype constructors and destructors, accompanied by a pro-
gramming language of some sort.

5. Implementations

5.1. The Proof Monad in PVS
PVS has an extensive proof language [36]. Initial attempts to formalize its

semantics [2], although incomplete, have highlighted its complexity. In partic-
ular, it uses two kinds of exceptions, called failure and backtrack. In [19], the
authors have proposed denotational semantics for a large part of this language,
based on a pseudo-monadic structure. The theory of the proof monad is a direct
extension and simplification of this work, and the results obtained in [19] can
be trivially translated into this article’s formalism.

The formalization of the proof structure allowed for a better understanding
and documentation of PVS’s proof language. Based on this formalization, a
number of new strategies testing the proof engine feedback have been written to
aid the user in controlling the prover’s power. For instance, a strategy named
test was implemented that simulates the application of an instruction to the
proof state without modifying it and, depending on the outcome, it applies one
of its remaining arguments.

Furthermore, a streamlined proof language was designed based on the proof
structure, with the aim of providing instructions with very elementary semantics
to the user, and hence a leaner learning curve for new strategy programmers.
This language, called PVS#, has been implemented in a PVS package called
Practicals, and is available to download at:
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shemesh.larc.nasa.gov/people/cam/Practicals

In PVS#, the failure/backtrack exception mechanism was abandoned in favor
of a simple exception handling mechanism. Additionally, while PVS’s original
proof language was largely based on the complex try strategy, PVS#’s under-
lying structure is built on the simpler monadic operators.

5.2. The Proof Monad in FSP
FSP is a prover intended to be used as an interface to other provers, such as

Coq and PVS. Its proof development component carries a thorough implemen-
tation of the proof monad as presented in this article as a means to encode the
prover-user interaction. In particular, it features the strategy constructs pro-
posed in this paper. These constructs have been used to write proof scripts, in
particular in the development of a 150 proofs-long library encoding the theory
of real closed fields.

FSP is still under construction, but releases are readily available at:

www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship/trunk

An extensive documentation of the system and of its proof language can be
found in [18].

6. Discussion and Related Work

From the perspective of strategies, the type of tactics in the monadic frame-
work is τ →Mτ . This means that a tactic takes a proof tree with potentially
many current goals and returns another tree with additional information on the
outcome of the application of the tactic. This global interpretation of tactics is
lifted from the local one, that maps a current goal to a one-step proof inference
with zero or more subgoals. Other avenues were also explored:

• Defining an operator ? of the form:

goal multiset → (goal → goal multiset)→ goal multiset

with monadic information attached to multisets. This approach ignores
the global semantics of strategies. For instance, strategies that require
knowledge of the complete proof tree (such as proof plans) cannot be
expressed using this approach. While the semantics of proof plans are
beyond the scope of this paper, it seems possible to formalize proof plans
using proof monads.
What is more, the use of goal multisets entails the loss of the structure
of the proof tree, an arguably significant asset when reasoning about the
semantics of a proof script. This is aggravated by the complexity of the
datatypes involved in the treatment of metavariables (see Section 6.1).
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• Defining an operator ? of the form:

Mτ → (τ[1] →Mτ)→Mτ

where τ[1] is a proof tree with just one current goal. In this case the
expression of the operator ? is convoluted, having to include a way to
loop through the subgoals of its first argument. Instead, the approach
presented in this paper trades a more liberal notion of tactic application
(one that takes effect on a current tree rather than a single goal) for a
streamlined composition operation.

The semantics of tactic application presented in this paper seems to be
restrictive. Indeed, it is assumed that applying a tactic to a set of current
goals corresponds to iterating the application of the tactic to all goals in order.
This assumption on the semantics of tactics introduces some of the traditional
limitations of LCF tactics as, for example, a view of the proof tree that is limited
to the current goals. Some of these limitations can be overcome with the use of
programming strategies, rather than tactics. However, this may not always be
possible given both performance requirements, and the overhead involved with
such a programming paradigm.

6.1. The case of existential variables
There exists an advanced feature of procedural theorem provers that com-

plicates the semantics of tactics: existential variables. In a number of theorem
provers, existential variables are used to represent incomplete formulas, and fa-
cilitate proof development by deferring some of the guessing work to a later
point. As such, they can be shared between different goals, and they can be
instantiated as a side-effect of some proof instructions. While this has no im-
pact on strategies, it requires tactics to be considered as acting on a more global
structure, instead of local goals. It is possible to deal with this extension in a
modular way, for example by dealing with the goals locally and widening the
scope as needed, but this significantly complicates the semantics of tactics.

Furthermore, existential variables are treated differently by different theorem
provers. In Coq, they are considered separate from the proof tree, and can only
be manipulated by specific tactics. This isolates the problem to a few corner
cases, that can be dealt with, for instance, by adding a map of these variables
to the proof tree structure. In Matita [3], however, they are considered an
integral part of the proof tree, and goals can be discharged as a common tactic
side-effect. Proof monads can be extended to cover this use by promoting an
approach similar to Arnaud Spiwack’s, who is currently working on a way to
represent dependencies between subgoals in Coq [37]. In this approach, all the
goals that contain an existential variable can cross-reference each other, and the
definition of a current goal would comes to encompass all its dependent subgoals.
A tactic that needs this piece of information can then access the cross-referenced
goals.
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6.2. Related work
Delahaye [10] made the first attempt at formalizing the semantics of Coq’s

proof language. He proposed a language called Lpdt and provided its formal
big-step semantics. However, these semantics were coupled with the semantics
of lower-level tactics, making it difficult to abstract the principles of his design
from his implementation of a logical framework. Using the constructs inherited
from LCF [13], Delahaye also enriched Coq’s proof language with a few powerful
programming constructs, and documented this work using informal big-step
semantics.

Jojgov [15] used a notion of parametrized metavariables to describe unproved
branches of incomplete proofs in the CIC logical framework. He proposed small-
step operational semantics for proof languages, but he did not recognize the
modularity of the formalisms for tactics and strategies. As a result, the rules
in his framework deal with whole proofs. The case of the sequence and identity
strategies are only mentioned as an aside and without any reference to a monadic
structure, and the semantics are largely focussed on the case of tactics.

Sacerdoti, Tassi, and Zacchiroli [8] recently formalized and implemented an
innovative step-by-step evaluator for some of the strategies in the LCF proof
language. In doing so, they expressed the small-step semantics of their language
and discussed the human-prover interaction. In their work, they treated proofs
as collections of lists (context, continuation, open goals, etc.) and they did not
make the connection with monadic structures.

Martin and Gibbons [27] in an unpublished note remarked that Angel’s [26]
proof language had a monadic structure, and generalized their observations to
a generic proof language. Their note is based on the same intuition as the one
presented in this paper. However their development avoided any description of a
proof datatype, only mapping proof language constructs to monadic operators.
Furthermore, their proof language was minimal and the extension to some of
the tactic combinators presented in this paper is not straightforward.

An interesting comparison can be made with frameworks for combinator
parsing [39] that, like the work presented here, propose a sequencing operator.
However, unlike proof languages, those frameworks provide support for alterna-
tion, i.e., parallel application. The closest feature to alternation in LCF-style
theorem provers is the strategy orelse, which does not provide the aggregation
feature of alternation. Instead, this strategy applies its arguments sequentially
until one succeeds. This feature could be used in dealing with proof search
strategies, a key features of automated theorem provers, by helping model the
construction of the search space.

Rewriting strategies [7] use state information similar to the monadic struc-
ture presented in this paper. Moreover, the structure of proof trees is also
similar to the structure of terms used by rewrite systems. However, rewrit-
ing strategy languages do not have interactive features as proof languages of
procedural theorem provers do. In this area, the link with rewriting strategies
has recently been investigated [17] and the relation to deduction modulo [11] is
being examined.
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7. Conclusion

This article has presented a mathematical structure designed to express the
complex semantics of procedural proof languages, and in particular the human-
prover interaction of these languages. It has been shown that a monadic con-
struct, combined with a careful abstraction of the concepts of proof trees and
current goals, is expressive enough for this purpose. In this sense this result is
in line with those obtained in the theory of programming languages, where the
same kind of monadic constructions have been used to add imperative traits to
functional languages.

An important feature of this formalism is that it relies on a representation
of proof trees that is not tied to any particular logical framework: this ensures
that it can be used to formalize all kinds of different proof systems. This feature
has been illustrated by using the proof monad to express the semantics of the
proof languages in two different proof assistants: PVS, which is based on typed
higher-order logic, and FSP, which is based on an untyped first-order logic.

The main contribution of this work is in the field of proof languages design.
The proof monad sets a formal framework for this task, where previously none
existed. It also helps identify the core constructs of these languages, and suggests
a dichotomy between their programming and interactive components.
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